Lesson Plan Format	
Author: Louise Liable-Sands, Andi Martin	Topic or Unit of Study: Chemical Changes - Volcano Reaction
Grade/Level: $4^{\text {th }}-6^{\text {th }}$	Lesson Start and End Time: 40 min
Outcomes	
Academic Standards:	
PDE Standards: 3.2.4.A4 - Combining two or more substances may make new materials with different properties. 3.2.6.A4 - Differentiate between physical and chemical changes. Next Generation Science Standards: 5-PS1-3. Make observations and measurements to identify materials based on their properties. 5-PS1-4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. Objectives: SWBAT understand chemical reactions by providing evidence to support the claim of either a physical or chemical change in each of the four activities.	

Instructional Materials: Be sure to name materials and resources so that they match your descriptions in the procedure of the Lesson Plan. List all websites or texts according to APA reference procedures.

Pre-Trip Information
Teachers review physical properties with students -

- Three states of matter
- Physical properties: Color, odor, can you see light through it, etc.
- Definitions of chemical change, physical change
- Chemical change - changes chemical composition (chemical formula changes)
- Physical change - most common type is physical change of state ($\mathrm{s}, \mathrm{l}, \mathrm{g}$; water is a good example)

Helpful Websites
Chemical Changes: Crash Course Kids https://www.youtube.com/watch?v=37pirOej SE (3:50 min)

- This would be a good video to do pre-lesson.

Teacher - What will the teacher need?
Below is a list of materials needed for each experiment:

- Introduction/Closure: ice cubes and beaker
- Teacher demo: 1 mL Iron (II) Nitrate solution and 1 mL Potassium Thiocyanate solution, beaker, pipets
- Calcium Chloride: Container of calcium chloride, 25 mL water, beakers, thermometers, tablespoons
- Phenolphthalein: phenolphthalein solution in a dropping bottle, sodium hydroxide solution, vinegar,

beakers

- Calcium Chloride + Sodium Hydroxide: calcium chloride solution, sodium hydroxide solution, test tubes, pipets/droppers
- Volcano materials: Baking soda, 16 oz. water bottles, 50 mL vinegar
- General materials: tablespoons, beakers, test tubes, pipets, temperature probes, safety glasses, waste disposal

Student - What will each student or group of students need?

- Pen/Pencil
- Lab notebooks
- Observation form

Procedures with Time Span

Introduction (time span - 5 minutes): Informing Students of objectives and rationale for the lesson, Gaining Attention, Activating Background Knowledge, Inquiry into the topic/concept.

Safety

- Safety glasses at all times
- Do not pour anything down the drain - waste disposal
- If there is a spill - let an adult know (you're not in trouble)

Share Objectives

ASK: When we mix two things together, how do we know a chemical or physical change occurs? What would you expect to observe? What might change?
Answer: If you can observe the below changes, a chemical change may have occurred.

- Solid forms
- Gas forms
- Temperature changes
- Odor changes
- Color changes

Developmental Activities (time span - 45 minutes): Guided Practice ${ }_{2}$ Checkpoints for Understanding, Independent Practice.

Teacher demo-5 minutes
Student demos (10 min each - activity + observations/discussion)

3 parts to every observation

1. What are your observations before mixing?
2. What are your observations after mixing?
3. Conclusions: Physical or Chemical change? Support with your observations
a. This is P / C because....

Go through one teacher demo and four student activities. After each demo, pause for a discussion of
observations.

- Go through three steps of observations.
- Is it a physical or chemical change? Tell me why.

Teacher Demo - Iron (II) Nitrate solution and Potassium Thiocyanate solution

1. Mixing two Liquid Solutions - Mixing 0.1 M iron (III) nitrate solution and 0.1 M potassium thiocyanate solution
Purpose: Students to observe color change.
i. Materials: Iron (II) Nitrate solution and Potassium Thiocyanate solution, beaker, disposable pipets
ii. Instructions:
2. Obtain a container of 0.1 M iron (III) nitrate solution and 0.1 M potassium thiocyanate solution, one small test tube, a test tube rack, and two disposable pipets.
3. Record at least three (3) physical properties that describe each material below.
4. Using a disposable pipet, add 20 drops ($\sim 1 \mathrm{~mL}$) of 0.1 M iron (III) nitrate solution to a small test tube.
5. To the same test tube, add 20 drops ($\sim 1 \mathrm{~mL}$) of 0.1 M potassium thiocyanate solution.
6. While holding the test tube, flick the bottom of it to mix the two liquids.
7. Record observations in your lab notebook first and then transfer the information neatly onto the observation form.
8. When finished, give the test tube to your instructor for disposal.

Observations for mixing iron (III) nitrate solution and potassium thiocyanate solution
Determine whether a physical or chemical change occurred when mixing iron (III) nitrate solution and potassium thiocyanate solution and document on the observation form. Be sure to support your claim with your observations!!!

Student Activities

Break students into pairs to complete each student demo.
Have one student grab a tray of materials (trays are set up on the side beforehand).

1. Mixing a Solid with Water

A. Mixing sugar and water

Purpose: Students to observe the physical change of dissolution.
i. Materials: sugar, 25 mL deionized water, and 50 mL beaker
ii. Instructions:

1. Obtain a container of sugar and a wash bottle of deionized (DI) water.
2. Record at least three (3) physical properties that describe each material below.
3. Add approximately 25 mL of DI water to a 50 mL beaker.
4. Add 1-2 scoops of sugar to beaker and stir.
5. Record observations.
B. Mixing calcium chloride and water

Purpose: Students to observe temperature change.
i. Materials: calcium chloride, 25 mL deionized water, and 50 mL beaker, thermometer
ii. Instructions:

1. Obtain a container of calcium chloride and a wash bottle of deionized (DI) water.
2. Record at least three (3) physical properties that describe each material below.
3. Add approximately 25 mL of DI water to a 50 mL beaker.
4. Add $3-4$ scoops of calcium chloride to beaker and stir.
5. Insert a thermometer into the solution and record initial and final temperatures.
6. If no temperature change is observed within one minute, add another 2-3 scoops of calcium chloride to beaker and stir.
7. Record observations.
8. Phenolphthalein

Purpose: Students to observe color change.
A. Mixing phenolphthalein and vinegar
i. Materials: phenolphthalein solution in a dropping bottle, vinegar, beaker
ii. Instructions:

1. Add phenolphthalein to vinegar in a beaker.
2. Observe what happens in each mixture (mixture in vinegar stays colorless).
3. Record observations.
B. Mixing phenolphthalein and sodium hydroxide
i. Materials: phenolphthalein solution in a dropping bottle, sodium hydroxide solution, beaker
ii. Instructions:
4. Add phenolphthalein solution to sodium hydroxide solution in a beaker.
5. Observe what happens in each mixture (mixture in sodium hydroxide will turn pink).
6. Record observations.
7. Mixing two Liquid Solutions - Calcium chloride and Sodium hydroxide Solutions Purpose: Students to observe formation of a solid.
i. Materials: 0.1 M calcium chloride solution and 10% sodium hydroxide solution, test tube, and disposable pipets
ii. Instructions: Mixing 0.1 M calcium chloride solution and 10% sodium hydroxide solution
8. Obtain a container of 0.1 M calcium chloride solution and 10% sodium hydroxide
solution and one small test tube.
9. Record at least three (3) physical properties that describe each material below.
10. Using a disposable pipet, add 20 drops ($\sim 1 \mathrm{~mL}$) of 0.1 M calcium chloride solution to a small test tube.
11. To the same test tube, add 20 drops ($\sim 1 \mathrm{~mL}$) of 10% sodium hydroxide solution.
12. While holding the test tube, flick the bottom of it to mix the two liquids.
13. Record observations.
14. Volcano reaction

Purpose: Students to observe formation of a gas and the solid disappears.
i. Materials: baking soda, 50 mL vinegar, beaker, and teaspoon
ii. Instructions: Mixing baking soda and vinegar

1. Get a container of baking soda and vinegar.
2. Record at least three (3) physical properties that describe each material on the observation form.
3. Place approximately 50 mL of vinegar in a dry 150 mL beaker.
4. Add one scoop of baking soda to the vinegar in the beaker.
5. Record observations.

Make observations and claims after each activity -

- What do you see?
- What are your observations? Students need to name three observations.
- Is it physical or chemical? Tell me why.
- You have to make a choice and support it with evidence. Students should be able to distinguish between P / C.

Closure/Summary (time span - 5 minutes): Making connections, Summarizing/Generalizing learning

Talk about claiming physical or chemical change that must be supported by observations (evidence).

- What are some of the observations you used to support physical change?
- What are some of the observations you used to support chemical change?

Assessment: Name the task used in your introduction, development or closure that documents student achievement of the LO.

- Observation form for the teacher demonstration and four student activities

Rating Scale: Rubric or other measure of student achievement of LO:

3 - Exemplary: The observations and claims are accurate for all four student activities.
$\mathbf{2}$ - Proficient: The observations and claims are accurate for most of the activities, but more detail could enhance the students' explanations.
0-1 - Unacceptable: The observations and claims are inaccurate for most of the activities; or the task was not submitted.

Observation Form

Student Name:

Teacher Demonstration Solution A + Solution B (Iron (II) Nitrate + Potassium Thiocyanate)	
Observations BEFORE mixing: Solution A	Solution B
1.	1.
2.	2.
3.	
Observations AFTER mixing:	3.

